X射線熒光分析法同其他分析技術一樣,不是完美無缺的。在物質成分分析中,它對一些輕元素)的測定還不完全成熟,只能是屬于初期應用的階段。常規分析中某些元素的測定靈敏度不如原子發射光譜法高(采用同步輻射和質子激發的X射線熒光分析除外),根據各個工業部門生產自動化的要求(例如選礦流程中的自動控制分析),X射線熒光分析法正在不斷完善中。某些新發展起來的激發、色散和探測新技術還未能得到普遍的推廣應用,儀器的自動化和計算機化水平尚待進一步提高。突出的是,在快速分析方面至今實驗室的制樣自動化水平仍然是很低的,還不能適應全自動x射線熒光分析儀連續運轉的要求。
在儀器技術的改進方面對于常規的X射線熒光分析來說,為提高分析靈敏度,這種改進主要仍決定于激發、色散和探測等三個基本環節。
在激發源方面,常規X射線管對輕元素的激發,除銠靶外,還發現鈧靶的效率較高。新型的強大的同步輻射源在分析上的應用研究也已開始,在特征x射線外延吸收譜精細結構研究中更引起人們的高度重視。
在色散元件方面,隨著一些新型晶體尤其是輕、重元素交替淀積的碳化物多層膜質晶體的發展,在提高衍射效率方面對輕元素分析有可能獲得較大的效益。對于超長波X射線色散用的各種分析晶體和光柵在提高分辨率和擴大應用范圍方面,不斷取得新的進步。
在探測器方面,作為能譜儀的心臟,可以在室溫下工作,具有優良能量分辨本領的碘化汞晶體探測器也正在開發之中。

實驗室X熒光光譜儀的發展
可以說,以上儀器三個基本環節的突破,以及儀器結構的不斷改進(例如能量與波長色散譜儀的結合等),對于提高儀器的使用水平必將有很大的促進。此外,基本參數法的推廣應用,尚有賴于有關方面不斷地提高質量衰減系數、吸收陡變、熒光產額和原級x射線光譜的強度分布等基本參數的準確度。
至于分析理論和方法的發展,在物質成分的分析方面主要包括克服基體效應的基礎研究和擴大分析應用范圍兩方面。現在,基體效應的數學校正法正在通過校正模型的更深入研究和計算機軟件的進一步開發,向更高水平的方向發展。而且,隨著制樣技術的逐步自動化,各種物理化學前處理方法的改進,對于擴大分析含量范圍,包括進一步開展痕量元素測定等工作,在各應用部門中仍然有著發展的前景。